Deconstructing the genetic basis of spent sulphite liquor tolerance using deep sequencing of genome-shuffled yeast
نویسندگان
چکیده
BACKGROUND Identifying the genetic basis of complex microbial phenotypes is currently a major barrier to our understanding of multigenic traits and our ability to rationally design biocatalysts with highly specific attributes for the biotechnology industry. Here, we demonstrate that strain evolution by meiotic recombination-based genome shuffling coupled with deep sequencing can be used to deconstruct complex phenotypes and explore the nature of multigenic traits, while providing concrete targets for strain development. RESULTS We determined genomic variations found within Saccharomyces cerevisiae previously evolved in our laboratory by genome shuffling for tolerance to spent sulphite liquor. The representation of these variations was backtracked through parental mutant pools and cross-referenced with RNA-seq gene expression analysis to elucidate the importance of single mutations and key biological processes that play a role in our trait of interest. Our findings pinpoint novel genes and biological determinants of lignocellulosic hydrolysate inhibitor tolerance in yeast. These include the following: protein homeostasis constituents, including Ubp7p and Art5p, related to ubiquitin-mediated proteolysis; stress response transcriptional repressor, Nrg1p; and NADPH-dependent glutamate dehydrogenase, Gdh1p. Reverse engineering a prominent mutation in ubiquitin-specific protease gene UBP7 in a laboratory S. cerevisiae strain effectively increased spent sulphite liquor tolerance. CONCLUSIONS This study advances understanding of yeast tolerance mechanisms to inhibitory substrates and biocatalyst design for a biomass-to-biofuel/biochemical industry, while providing insights into the process of mutation accumulation that occurs during genome shuffling.
منابع مشابه
Fermentation performance and physiology of two strains of Saccharomyces cerevisiae during growth in high gravity spruce hydrolysate and spent sulphite liquor
BACKGROUND Lignocellulosic materials are a diverse group of substrates that are generally scarce in nutrients, which compromises the tolerance and fermentation performance of the fermenting organism. The problem is exacerbated by harsh pre-treatment, which introduces sugars and substances inhibitory to yeast metabolism. This study compares the fermentation behaviours of two yeast strains using ...
متن کاملTHESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Fermentation of lignocellulosic material: A study on bacterial contamination and yeast physiology
Progressive depletion of oil and conventional fossil fuels, an increased energy demand and an increased struggle for national energy security has led to the development of alternative biobased fuels, bioethanol being one of them. Bioethanol can be made from many different raw materials, and based on this are classified as 1 generation and 2 generation. This research work dealt with 2 generation...
متن کاملSpent Sulphite Liquor for Cultivation of an Edible Rhizopus Sp
Spent sulphite liquor, the major byproduct from the sulphite pulp production process, was diluted to 50% and used for production of an edible zygomycete Rhizopus sp. The focus was on production, yield, and composition of the fungal biomass composition. The fungus grew well at 20 to 40°C, but 32°C was found to be preferable compared to 20 and 40°C in terms of biomass production and yield (maximu...
متن کاملSequencing and Molecular Analysis of ATP 6 and ATP 8 of Mitochondrial Genome in Khorasanian Native Chickens
In order to perform breeding programs and improve production of native chickens, preserving genetic diversity in different areas of Iran is important due to the reduced available population. Genome sequencing is considered the most functional approach to determine the phylogeny relation between close populations. The aim of the present study was the evaluation of the phylogeny and genetic nucle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2015